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SUMMARY

A reduction in the minimum attainable feature size in

integrated circuits h.s lead to the possibility of more and
more complex circuits being built on a single chip (VLSI).
This technological advance brings with it the need to make

these circuits fault tolerant: to increase yield and
reliability and to reduce testing times. This Memorandum
briefly reviews current techniques for designing fault
tolerant circuitSbefore concentrating on a new, high-level
fault tolerance technique: algorithmic fault tolerance.

The concept of algorithmic fault tolerance is explained
and various techniques are reviewed with regard to their
suitability for providing fault tolerance for signal
processing algorithms. Suggestions are made for the

direction for further research. 7 -
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I Introduction

The use of high-density integrated circuit manufacturing methods (VLSI and

above) vhilst bringing many advantages to integrated circuit design also create

several new problems. The increase in complexity of the devices being produced,

coupled with limited access to internal circuit nodes, means that testing the

device is increasingly more difficult, both in the factory and in the field.

The reduction in geometry size, that allows this increased packing density,

means that defects in the silicon, or any of the numerous layers involved in

modern IC construction, are more likely to result in the malfunction of a

transistor [1. The gate that contains this transistor, and ultimately the

device itself, will thus exhibit a fault. The increased likelihood of a

defective transistor is therefore reflected in a poorer process yield.

A third problem is that of soft failures. These are faults that exist

intermittently, affecting the device for a finite period before disappearing,

possibly to return at some later time. Possible causes of such a phenomenon

include the alteration of the charge on a transistor's gate by cosmic radiation

or a-particle emission, the latter usually being due to the case material (this

is particularly common in solid state memory devices); electron tunnelling

through thin barriers; electromagnetic pick-up within the device and capacitive

coupling between adjacent circuit elements. The occurrence of such a fault

renders the device strictly useless since no confidence can be placed in its

operation.

These soft hardvare-faults can be augmented by a similar set of softvare

faults. The complexity of VLSI devices is such that the components of an

equipment can nov include microprocessors. These will be under software control

and thus may make mistakes due to short comings in the program design. It is

probably fair to assume that the program has, to some extent, been tested and so

works under most conditions. It is possible, however, that certain (rare?)

conditions exist under which the program will produce an erroneous result,

returning to normal operation once these conditions have been removed.

To the class of soft hardvare-failures, the more usual one of hard or

permanent faults may be added. These include the well known problems of circuit

failure due to ageing and shock and vibration. The distinction between soft and

hard failures is that in the latter case the fault, once manifested, remains in

evidence. Again the high densities involved in VLSI mean that such faults are
1
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more likely to occur, thus shortening the life of the device.

The net effect of all of the above points is that to gain the full benefit of

these high-density fabrication methods, or to make softvare controlled equipment

more reliable, it is becoming increasingly important to be able to design "fault

tolerant" systems. One possible solution to these problems is some form of error

detection coupled vith an in-built redundancy. The error detection capability

effectively provides a self-test capacity for the device, even after it has left

the factory, vhilst the redundancy in the system can be used mask-out any fault

thus enabling the device to continue to function correctly. A "static" fault

tolerant device that can mask-out faults under non-operational conditions vii

clearly improve yield and device lifetime (if the self-repair process is used

intermittently). To protect against the soft failure, hovever, requires

concurrent self-repair i.e. the ability to detect and mask faults in parallel

vith normal operations.

2 Fault Tolerant Techniques

There are many different approaches [21131 to the task of making a system

fault tolerant. A significant factor is the type of system being considered and

the literature can accordingly be subdivided on the basis of the category into

vhich the system being considered falls. A list of categories and some examples

of both the category and the fault tolerant technique can be found in table 1.

It should be realised that in some cases the distinction is artificial, and that

the edges betveen categories are often blurred.

The majority of the york in the field of fault tolerant design has been

concerned vith the design of special purpose hardvare or svitching algorithms.

The former category includes such circuits as AN-coded adders (see belov). The

idea here is to create fault tolerant systems by constructing them from fault

tolerant components. In the case of the svitching algorithms the interest is

usually in adaptive configuration/routing in computer-based communication

netvorks (meaning collections of complex, usually softvare controlled,

processing elements). The object of the netvork may be anything from

inter-mainframe-computer communication to dedicated hardvare for systolic

algorithms.
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Category Typical Members Technique

Lov Level Circuits General circuits Triple Modular Redundacy
Hodulo Reduction Self-checking Checkers
Adders/Multipliers Arithmetic Codes
Memories/data buses BCH Codes

High Level Circuits FIR Filters BCH Codes
Matrix Maths. (atrix Checksums
Accelerators Invariance Properties

Equipment Systolic Array (Hardvare Controlled
, Reconfiguration

Multiprocessors ( Softvare Controlled
, Reconfiguration

Softvare Computer Netvork ( Svitched Packet
(Netvork

Subroutine Re-try Schemes

Table 1. Fault Tolerant Techniques.

Very little interest has been shovn in the problem of algorithmic fault

tolerance i.e. the design of hardvare-independent fault tolerant mathematical

algorithms. Such algorithms are concerned vith the problem of achieving error-

free results in mathematical calculations vithout having to specify the exact

nature of the hardvare. If a particular mathematical calculation vere to be

implemented in such an algorithm, either in softvare (e.g. general purpose

computer) or hardvare (e.g. systolic array), any fault vith the underlying

system (ALU or processing elements) vill be detected and, ideally, corrected

(see figure 1). Of the techniques mentioned, those based on arithmetic codes,

BCH codes, matrix checksums and matrix invariance properties are most suitable

for such an approach. These and several other techniques, vhich also appear to

hold some promise, are discussed further in section 3.

data -calculation results

> error
flag

Figure 1. Algorithmic Fault Tolerance.

3

A



3 Algorithmic Fault Tolerance

3.1 Literature Survey

Abraham [41151 and Luk [6][71 proposed the addition of row and column
checksums to matrices in order to provide error protection in various matrix

operations (multiplication, addition, LU and OR decomposition). The checksums

are nothing more than the sum of the elements in a row or column but as Abraham

noted these sums are invariant under the matrix operations mentioned. In a more

recent paper [8] Abraham also briefly considered how to exploit any properties

of the matrix that remain invariant under the given operation, in the detection

of errors e.g. checking for a change in the norm of a row or column vector under

a unitary transformation.

It has long been knovn that the convolution operation is equivalent to the

multiplication of polynomials and this is exactly the frame work used in the
theory of BCH error-correction codes. Redinbo 191 used these facts to
incorporate error-correction in an FIR filter. As a result of this study he also

noted that the so-called chord property 1 of the number theoretic transform

effectively implies redundancy and so can also be used for error protection.

The AN and residue codes 110)[1111121114] have, up to nov, been considered

only in conjunction vith special purpose hardvare to construct fault tolerant

arithmetic circuits. There is no reason, however, vhy these coding methods

cannot be used at the algorithmic level in much the same way as the BCH codes

vere by Redinbo. In fact AN codes are entirely analogous to BCH codes, both

codes being cyclic codes (i.e. ideals of a finite ring2 : Z2 n_1 and

GF(q)[x]/<xn-1> respectively).

There are also several other areas of mathematics that contain results that

may be of some use in the field of algorithmic fault tolerance. These and the

above mentioned techniques are revieved in the folloving.

1. necessary existence of conjugates.
2. Z is thg ring of integers modulo n.
CF(q5[x]/<x -1> is the ring of polynomials vith coefficients taken from the
Galois field vith q elements, modulo the polynomial x -1.

4
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3.2 AN and BCH Codes

The basis of the use of cyclic codes for error protection is as follows. Let

R be a "commutative ring with unity" (e.g. the ring of integers modulo a given

integer) and consider the addition of a' . ga c R and x' - g-x c R, for

arbitrary a and x and some given g (see figure 2).

error protected

> - ring addition

-E i Error protected-

AI I
coefficient ga

Figure 2. Cyclic Code for Addition

If an error should occur in the addition operation then the result y is given

by

y = a' + x' + e = g'a + g'x + e = g-(a + x) + e

Thus, provided g was chosen so that e * 0 MOD g, for all e # 0, the error can be

detected by the occurrence of a non-zero residue of y modulo g (i.e. by the fact

that y is not a multiple of g). Indeed g may in fact be selected so that an

error value e can be uniquely 3 recovered from the erroneous result and hence the

correct result found. Consider the integers taken modulo 513:

Z513= (0,1,2,...,510,511,512).

A single error correcting code results from the choice g - 19:

19*5 + 19*3 - 95 + 57 - 152 = 19*8.

3. the error value is unique provided that the least complex error is chosen.

5



Hovever if an error occurs (a faulty carry circuit for bit 3, say):

19*5 4 1011111

+ 19*3 4 0111001

10010000 # 144.

Nov 144/19 - 7 rem. 11, and the non-zero remainder indicates an error. In fact

it can be shown that the only vay to get a remainder of 11, vith a single error,

is if (-8) vas added into the sum, thus the correct ansver is

(144 -(-8))/19 - 8.

Note that by encoding the tvo inputs (a and x) in the above fashion both arms

of the (dyadic) operation are protected (as indicated by the bars in figure 2).

The theories of AN and BCH codes are extensive ([10]1111][121, [151116]171).

The setting for AN codes is the ring of integers modulo 2 n-, for some n, (cf.

one's complement arithmetic) and so AN codes are clearly a good choice for

attempting to develop a theory of fault tolerant (computer based) algebra. A

fault tolerant algebra consists of redundant forms of multiplication and

addition that can detect or even correct errors. In order to begin to look at

this possibility, however, it is clearly necessary for the AN coding technique

to be able to be applied to multiplication as well as addition. This is by no

means straight forward: the AN code vas originally designed to combat errors in

addition only.

BCH codes on the other hand could be used in the field of signal processing

by virtue of the equivalence betveen the convolution of finite sequences and the

multiplication ci polynomials4 (18). The regime for BCH codes is also that of

polynomial algebra, hovever they also vere originally designed for fault

tolerant addition and the convolution operation is equivalent to multiplication.

One possible vay to achieve error protection in the multiplication process is

shown in figure 3. This is essentially the technique used by Redinbo 191 and
Chien 1131. Notice that here only one of the tvo inputs is encoded (multiplied

by g) and thus only this input is error-protected. The reason behind this is the

4. The coefficients of the polynomials are the elements of the sequences.
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fact that product of two multiples of g is a multiple of g2

2
(g'a) (g.x) - g (a'x)

Thus the product vould, in general, be the encoded form not of a'x but g-a-x

(see example at the end of section A.2.2). There are other short comings with

the use of cyclic codes which are discussed further in Appendix A, along with

some ideas on how to overcome them.

input x 1 - ring multiplication >-output y- g.(a.x)

error protection-
A

coefficient g.a

Figure 3. Cyclic Code for Mulitiplication

3.3 Number Theoretic Transforms

Redinbo's solution 191 to the above problem of protecting both operands of a

multiplication (specifically in GF(q)[x]/(xn-1> i.e. for polynomials), was to

use the redundancy of the number theoretic transform (NTT) when the input is

restricted to a proper subset of the domain. Redinbo considered the problem of

how to error protect an FIR filter, i.e. the convolution of finite sequences.

One way to perform this operation is by pointvise multiplication in a transform

domain (figure 4. cf. convolution via DFT).

It is well known that the input space (the domain) of the DFT is the space of

(finite) sequences of complex numbers. If the input is restricted so as to be a

real sequence, the output sequence obeys certain relationships as a consequence:

V (k) - V(N-k), 0 < k < N. The domain of a NTT is the space of finite sequences

with coefficients from a certain 5 extension field of GF(q) (GF(qm) say 6 ). If the

input is then restricted to sequences over GF(q), the resulting "spectrum" again

obeys certain relationships. These relationships are some times collectively

referred to as "the chord property" of the sequence. The nse of the chord

property allows the input variable to be checked for errors - the coefficient

5. chosen so that it contains a primitive Nth root of unity
6. it may turn out that ml.

7
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being precomputed (as signified by the brackets in figure 4).

n m n

Asq GF~q)-

Figure 4. Convolution via NTT

Specifically, the chord property of the NTT is

(Vj)q - Vj - .

where V c GF(q u)n is the NTT of v c GF(q)n . In effect this says that the

transform coefficients that are indexed by the elements of a certain subset (a

cyclotomic subset) can be determined from Just one coefficient. Thus any error,

not itself an allowable input, will cause the chord property to be violated and

hence the error can be detected. The correct value can be found from the other

coefficients and the above formula. If there are L members of the cyclotomic

subset C(J) then the minimum distance of the "code" is L and hence it can

detect L j-1 errors.

As the NTT is linear, it commutes with the addition operator and so it is

possible to protect the addition of sequences as well as their convolution. This

then constitutes a fault tolerant algebra of finite sequences. The exact error-

protection power of such an algebra is as yet unknown. It is also worth noting

that the algebra of polynomials is also the setting for most Galois fields. It

therefore seems likely that this technique can be used to construct a fault

tolerant Galois field algebra.

3.4 Residue Codes

The main drav-back with AN codes is the faet that the minimum distance of the

code tends to vary inversely with the size of code (number of codevords). Thus

whilst it is possible to have single error-correcting codes with a reasonable

number of codewords, the large distance codes tend to have very small sizes e.g.
8



the generator A = 13797 produces a distance 6 code (double error correcting and

triple error detecting) but the arithmetic has to be done modulo 218-1 so there

are only (2 18_1)/13797 19 codevords.

A more attractive option is residue codes. These can be constructed, in

amongst other ways, from AN codes. The minimum distance, and thus the error-

protection capability, is preserved and the size of the code is that of the ring

e.g. the residue code based on the AN code with A = 13797 (see above) has

distance 6 and 218-1 codevords. Residue codes also work just as well for

multiplication as for addition. The main draw-back, if it is one, is that the

coded form of a number is in the form of a vector and the arithmetic algorithms

for the individual components are different from one another. This clearly adds

to the complexity of the system.

A residue code works by keeping a check on the number by means of a separate

"check number". The check number is the result of performing the same arithmetic

operations on the check number as on the original number, except that the

arithmetic is modulo a suitable base. The check arithmetic can thus be less

complex than the main arithmetic e.g. a check modulo 2 would only require 1 bit

arithmetic. Error detection is afforded by a comparison between the check number

and the main result modulo the check base: a modulo 2 check clearly detects any

error that turns an even number into an odd one, and vice versa. These modulo

sums are, for obvious reasons, referred to as "checkers" (see figure 5).

n arithmetic >N +
modulo I

V

((n)) ((N))
m -> arithmetic-> m -error

1 modulo m 1 correction

VI I
((n)) ((N)) A

2 MOD m check

V

MOD m check
2

Figure 5. Residue Coded Arithmetic.

Clearly it is possible for one, or more, of the checkers to be in error as

9
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vell as the main result. This makes the task of error protection slightly more

difficult for the residue codes as compared to that for AN codes. The theory for

this is hovever yell established. It should be noted that as the full-range

ansver is available the problem of sign determination and magnitude comparison

that besets .NS is not present.

3.5 Invariant properties

3.5.1 length, trace etc.

In certain mathematical operations various properties of the input variables

are invariant e.g. length of vectors under unitary transformations, matrix trace

under addition or multiplication. Such properties could be used to check on the

final result i.e. for error detection. It is not clear as yet vhether they can

be used for error correction.

3.5.2 Operator Invariant Subspaces.

There appears to exist a certain amount of work, at least in finite linear

algebra (1201 section 11.2), on subspaces that are invariant under a (linear)

operator. Further investigation is called for.

3.5.3 Spectral Methods

Blahut 1171 has shown that there exists a "frequency" domain representation

of (BCH) error correcting codes. Such a representation appears to have several

advantages from a coding point of viev including the fact that the syndrome of a

received vord is just its DFT. The error correcting properties arise from the

fact that the encoder can be considered to be a filter that has a certain

distribution of zeros. When errors (noise?) are added to the filtered (encoded)

sequence the result no longer has a spectrum vith these zeros. The presence of

errors can thus be detected by the non-zero spectral coefficients (via the DFT).

Error correction results from a reconstruction of the error sequence based on a

knovledge of some of its DFT coefficients (i.e. those at the zero positions).

There may be some possibility of exploiting the features cf a convolution

operator to obtain a degree of error protection vithout adding (further?)

redundancy. Under suitable interpretations of "frequency" such an approach may

well york for any linear operator, including matrix operators.

10



3.6 Codes over the Real Field.

Host of the techniques revieved so far are based on finite algebraic

structures and so are only suitable for integer problems. As most problems of

interest are natural11 represented in the Real/Complex field, it is desirable to

consider error protection over the real field.

The most yell knovn of the (data transmission) error correction codes, the

block and the convolution codes, are based on the idea of convolving the data

sequence vith a fixed sequence. The result of this convolution has certain

properties (e.g. zeros at certain frequency values) that enable any additive

noise to be detected and then removed. The extension to real sequences should be

considered. The similarity of the lerlekamp decoding algorithm and the

Yule-Valker equations in Linear prediction/Kalman filters constitutes an

appealing, if not conclusive, argument in favour the existence of Real valued

codes.

3.7 Codes for Matrices

3.7.1 2D Codes

There exists a certain amount of work (e.g. [191) on the subject of 2-D error

correction codes. These coding schemes are based on the idea of appending check

rovs and columns to a data matrix. Each check digit is the result of a parity

check over a row/column. Clearly such codes are the obvious extensions to

Abraham's work. It is not knovn at present7 vhat properties these codes have

i.e. vhether or not they are linear and hence invariant under addition and

scalar multiplication.

3.7.2 Ideals in HnM_(._

As most of the successful error correcting codes to date are based on the use

of an ideal as the code space, it should be fruitful to investigate the

structure of ideals in the ring of nxm matrices over a field K (Nnm(K)). The

pure mathematics of this problem has, of course, alread: been solved 1201.

7. by the author
11



4 conclusion

The field of algorithmic fault tolerance appears to be vide open, vith only a

handful of people actively engaged in relevant work. There is probably still a

lot of work in the area of (hardware) arithmetic codes/systems that could be

pertinent to the algorithmic case. Further study of the research literature, as

opposed to text books, is required.

Certainly there are still a lot of areas/techniques (see section 3) that, at

first sight, look promising and warrant closer Investigation. There are several

problems with the use of AN codes for protecting complicated algebra. The

advantages of such a technique are, however, such that more effort could be

justified in this direction. It must however be remembered that (useful) AN

codes are only single error correcting and that for higher error protection a

switch to the use of residue codes would be required. The latter are at least as

good as, and often better than, AN codes in all respects except for the

complexity of the arithmetic (vector instead of scalar). Exactly how much of a

penalty this is remains to be seen.

There is still a lot of work to be done, even for established methods like AN

and residue codes and Redinbo's BCH-protected convolution, In establishing

exactly how many and what sort of errors can be tolerated. Care must be taken in

this question as to the definition of an error. The conventional approach, in AN

and residue codes, is to assume a serial ripple-adder type circuit and so define

an error as an additive difference of j2gI. Increasingly in VLSI, arithmetic

circuits are pipelined or based on redundant number representations for which

the definition of 12i1 as an single error my not be suitable. Also the question

of determining, in terms of percentage overheads, how much the error protection

costs must not be neglected. The underlying system that Redinbo proposed for a

fault tolerant FIR filter has been known for a long time and has not been

implemented in many real-time systems presumably due to the complexity involved.

The anticipated possibilities of the spectral approach to BCH codes as

applied to the protection of FIR filters, and linear operators in general, seem

to be great. This is the probably the next topic to which to devote the most

effort. The use of an extension field (section 3.3) and the resultant redundancy

in the arithmetic could prove fruitful depending on the cost of implementing

finite field arithmetic, which has in thenepst proved to be great. The two other

topics that appear to hold the most immediate potential are the 2-D codes

12
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(section 3.7) and the BC/ue-Valker connection (section 3.6).
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APPEMIz A

Fault Tolerant Ring Algebra

A.1 Perceived Problems and Some Conjectures

As explained in section 3.2 in order to have a viable fault tolerant algebra

using AN or BCH codes, a multiplication operator that comutes with the coding

operation is required. Previous work (911131 suggested a method whereby only one

of the operands is encoded. This is because of the presence of an extra factor

of g - the code generator - in the product if both operands are encoded.

Although knowledge of the presence of this extra factor would allow a division

by another factor of g and thus restore the correct value, the correction would

have to be performed after each multiplication and not at the end of the

calculation as desired. Further in a complex algorithm it is usually necessary

to perform more than one multiplication, thus, even with only one input per

multiplication encoded, factors of g build up with each multiplication (see

figure Al). In calculations that contain products of sums the factors of g would

be hopelessly caught-up in the rest of the expression with no hope of removing

them.

2
..(g azx) 2

a .(g azx + gb)

b

(encoded operands shown in bold)
2

>g[g acxz + gbc

Figure Al. Arithmetic with AN Coded Operands

Even if a correction were applied after each multiplication there still are

short-comings with this approach. Consider the basic mechanism of error

protection for the product a-x. If the coefficient a is encoded as a' g-a then

16



the result of a faulty calculation could be

(x + e )(ga + e2 ) + 63 - g(ax) + (xe2 + ega + ele2 + e3)

where eI is an error associated with the inputing and any preprocessing of

the variable x,

e is due to the erroneous storage of the coefficient a

and e3 accounts for any errors on the main section of the multiplier.

As before the required result (ax) is a multiple of g but then so is the error

factor (elga). Thus, with a proper choice of generator g, it may be possible to

protect the circuit against errors of the form e2 and 63 but it is never

possible to provide protection against corruption of the variable x. It is also

worth noting at this point that whereas the standard theory will work for the

error 631 the error 62 appears as a multiple of x so that extra care must be

taken that possible error values (e2 ) and input values (x) are not such that the

product e2x is a multiple of g. If this were the case then the error will

effectively be masked by the particular input value. The same can be said with

reference to the term (ele2). A possible solution may be to choose g such that

it is prime (e.g. the Brovn-Peterson AN codes - see (101 p101).

A solution to the problem of accruing factors of g is the use of idempotent

generators. Under certain conditions it can be shown that there exists a
2

generator for a cyclic code that is idempotent i.e. y . Y (see section A.2).

Using such a generator means that not only is the problem of accumulating

factors of (in this case) y solved but also both operators could now be encoded

in the multiplication process (figure A2) or more significantly that the input

may be left in coded form (from the previous operation).

input- ring multiplication

A

coefficient -y-a

Figure A2. Idempotent Cyclic Code for Multiplication
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This does not, however, mean that the input is protected by the code. On the

contrary having the input as a multiple of Y can be considered to make matters

worse. Consider

(Yx + eI)(ya + e2) + e3 . y(ax) + (yxe 2 + elya + eIe2 + e3)

Here the output error terms yxe2, ely are both multiples of y and hence are

undetectable. Thus any error associated vith the storage of the coefficient a

(e2) can only be detected in conjunction with an input error eI via the eIe 2

term.

One solution to this problem could be to use a mixture of codes. The input

variable (x) could be encoded using one code, and the coefficient (a) using

another:

(glx + el)(g 2a + e2 ) + e3 - g1g2(ax) + (glxe2 + elg 2a + ele 2 + e3 )

Such coding may then afford protection against errors of type el, e2. What is

then required is to be able to combat type e3 errors in such a way that the

output of the multiplier is encoded in the same code as x. This might be

achieved by requiring that the generator for the coefficient code be an

idempotent with respect to the generator of the input code i.e. such that

g1'g2 - g1 but this requires further research.

McWhirter8 has pointed out that the problem of masking errors, particularly

input errors (type eI), in itself may not be that disastrous since the inputs to

each multiplier could be checked. This is clearly not as satisfactory as a

single check at the end of a (complex) calculation but is better than having to

check the inputs to each adder as well as each multiplier.

Given the elegance of residue codes it may be argued that AN codes have no

use in fault tolerant systems. The author believes, however, that this is not

necessarily so. There are many low-distance AN codes that have quite a large

number of codevords and hence have some practical value. The lack of error

correcting power may not be all that prohibitive if the expected frequency of

errors is low and detection, rather than correction, is acceptable. One

application that springs to mind is in residue code systems. Here (see

8. private communication
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section 3.4) it is possible for the checkers to be in error, however in this

case it is not necessary to correct the result: knowing it is in error is

sufficient. The checker circuits could then benefit from being coded for error

detection.

AN codes also have the advantage that the arithmetic is "standard", unlike

residue codes vhich have a parallel structure, thus AN codes could be used In

on-line testing of conventional circuits. The basic fact that allows any coding

scheme to york is that the codevords are recognisable as such. In the case of

cyclic codes, they are all multiples of the generator. As AN codes are designed

such that the codevords remain codewords under addition and, to a certain

extent, multiplication, if the input to an algorithm are AN codevords then the

output should be one also. Thus the inputs to a system could be periodically put

in AN coded form and the output checked to see if it is also a codevord. It may

not be possible to detect all errors (see above) but certainly some errors will

be found.
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A.2 Idempotents

Definition:

Let R be a ring, then e c R is an ideepotent if

e2e

Theorem:

Let K be a Euclidean domain. An ideal
9 <g> in the Euclidean domain

10

R - K/<J>, j c K and g I J, can be generated by a unique idempotent y,

provided (g,j/g) - 1.

E.g. let K be the ring of integers, if j - 65 the

ideal <j> is the set of integer multiples of 65 and

the Euclidean domain K/<j> is the ring of integers

modulo 65 (i.e. Z6 5 ). Nov consider the ideal of Z65

generated by g f 13 (i.e. all integers that are

multiples of 13 modulo 65):

<g> - (13,26,39,52,65.0]

On the other hand

<26> - (26,52,78.13,104n39,130WO - <g>,

and

(26)2 . 676 a 26 MOD 65.

Proof: (cf. 1151 ch.8)

Define h - j/g . If (h,g) - I then, by the Euclidean division

algorithm, there exists p, q e R such that

pg + qh = 1

Consider y - pg e R,

y(y + qh) - y

i.e.
2

y + pgqh - y

9. <g> is the principal ideal generated by the element g.
10. K/<J> is the ring of residue classes of K modulo <J>
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Multiplication is commutative in an Euclidean domain, hence

pgqh - (pq)(gh) - (pq)j - 0

Thus 2y - y

and y is an idempotent.

In the case vhere R n Z65 and g 13, ve have h-

65/13 - 5. As 13 and 5 are relatively prime ye can

find integers p, q such that

13p + 5q m 1 MOD 65.

In fact p = 2, q = 8 and hence y = 2*13 * 26.

Nov as

- pg

then

<Y> c g>,

but

gy - g(1 - qh)

- g - qj

-g

i.e.
<V C <T>

Thus
<g> . <Y>.

and y generates the ideal.

Clearly the ideal generated by the element 13 must

contain the element 26, so that <26> will be a subset

of <13>.

But as 13*26 = 338 a 13 MOD 65, the element 13 can be

considered to be a multiple of 26 aad hence <13> c

<26>
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The idempotent y is unique, for if f c R is another idempotent that generates

<g> then

y C <f>

i.e.

y-af for some a c i

Thus

yf a af2 - af = y.

Similarly

f c <y>

i.e.

f -by for some b c R

thus

yf - by2 - by - f.

Hence
y * f,

If the element f generated the ideal then the element

26 must be a multiple of f: 26 m af HOD 65.

Hence

26f a (af)f * af2 HOD 65.

If f is also an idempotent (i.e. f2 = f) then

26f m af m 26 MOD 65.

Ve already knov that the element 26 generates the

ideal, so that f must be some multiple of 26: 26b say.

Then

26f a 26(26b) * 26b m f MOD 65.

Hence f - 26 and the element 26 is the only idempotent

generator.
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A.2.1 Idempotent Generators for BCH Codes

A BCH code is an ideal in GF(q)[x]/<x -l>, for (q,n) . 1, generated by g(x) a

factor of xn-1. It is vell known that the roots of g(x) consist of conjugate

sets ((151 p199) and hence that (g(x),(x n-1)/g(x)) - 1. Thus the conditions of

the above theorem hold and the code can be generated by the idempotent

Y(x) = p(x)g(x)

where p(x) a (g(x))- I MOD (xn-1)/g(x).

A.2.2 Idempotent Generators for AN Codes

A cyclic AN code Is an ideal in Z2 n_,, generated by A, a divisor of 2n-1 .
nThus provided that (A,2 -1/A) - 1, the code can be generated by the idempotent

a - pA

where p - A- 1OD 2 -1/A.

It is not known if the condition that A and (2 n-1)/a be relatively prime

can always be met. The condition certainly holds for some values of A. Consider

the single error-correcting AN code in the ring Z6 5, with A - 13 and 0 < N < 5.

Here we have

= 26.

To see the code at york in a multiplication consider the calculation

(a + b)-c MOD 5

vhere a = 2, b . 4, c - 3. Encoding the values a, b, c as AN codevords we get

a' = 52,

b' = 92 . 39 HOD 65,

c' - 78 a 13 HOD 65.

Vith perfect arithmetic ye get

(52 + 39)*13 n 26*13 m 3*26 MOD 65

Which is the coded form of 3, the correct answer. Repeating the calculation with

the original generator A - 13, we find:

a' = 26

b' - 52

c, = 39

and hence

(26 + 52)39 - 78*39 a 52 MOD 65.

11. by the author
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But 52 =13*4 I.e. the coded form of the number 4, vhich is not the correct
ansver.

24



UCWNT CONTROL SHEET

Overall security classification of sheet UNCLASSIFIED

(As far as possible this sheet should contain only unclassified Information. If it Is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originatorls Reference 3. Agency Reference 4. Report Security
Memorandum 4214 .lassifi cat, c

Unclassified

5. Originator's Code (if 6. Originator (Corporate Author) Nae and Location
known) Royal Signals and Radar Establishment

7784G00 St Andrews Road, Malvern, Worcestershire WR14 3PS

5a. Sponsoring Agency's 5a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

ALGORITIlC FAULT TOLERANCE

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, place and date of conference

B. Author 1 Surname. Initials 9(a) Author 2 9(b) Authors 3.4... 10. Date I P. ref.

Proudler I K 9.88 26

11. Contract Number 12. Period 13. Project 1'. Other Reference

15. Distribution statement

.Unlimited

Descriptors (or keywords)

continue on separate Piece of cper

Abtract

A reduction in the minimum attainable feature size in integrated circuits

has lead to the possibility of more and more complex circuits being built on a

single chip (VLSI). This technological advance brings with it the need to make
these circuits fault tolerant: to increase yield and reliability and to reduce

testing times. This Memorandum briefly reviews current techniques for designing
fault tolerant circuit before concentrating on a new, high-level fault tolerance
technique: algorithmic fault tolerance.

The concept of algorithmic fault tolerance is explained and various tech-
niques are reviewed with regard to their suitability for providing fault toler-

ance for signal processing algorithms. Suggestions are made for the direction
for further research.

380/48


